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Problem: Video Captioning

Possible captions:
1. the men are fighting using martial arts.
2. men are doing martial arts.
3. the men are doing martial arts together in the

field.

Possible captions:
1. awoman is applying makeup on her face

2. ayoung lady is doing makeup on her face
3. agirl applying blush on her face




Syntactic Patterns in Video Descriptions

object1 object2 action object3

275. a woman and a child swim in a pool...

560. ... a man and a dog ... sitting at the top of the free...

690. a man and a pig are walking along a sidewalk at daytime.
1100. a woman and a man driving in a car

1354. a man and a woman ... hold a microphone

1677. a man and a woman sitting in a radio studio are shown.
1883. a man and a young girl riding a marry-go-round

2041. A Spanish-speaking man and a Spanish-speaking woman argue a TV split screen...
2215. A big dog and a small dog sharing a bone.

2632. A young man and a woman brush their teeth in a bathroom.
2769. A young man and a woman are kissing, in a room.

2785. Awoman and a boy are watching a video...
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Syntactic Patterns in Video Descriptions

object1 object2 action object3

275. a woman and a child swim in a pool...
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Video Captioning with Visual-Syntactic Embedding

1. Cues about the syntactic structure of the video’s descriptions
can be directly extracted from a video

2. Existing models often produce syntactically incorrect sentences
which harms their performance on standard datasets
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Model Overview
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Visual-Syntactic Embedding

the men are fighting using martial arts

positive example

negative example

a woman is applying makeup on her face




Visual-Syntactic Embedding
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Visual-Syntactic Embedding
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Training Process
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Syntax-Weighted Loss

Given a video z, the ground-truth caption y = (y1,ve,...,yr) of z, and the POS
tagging ¢ of the generated description, we define the weight

w = max {1, L7 — (dist (¢(p()),w(t)) + 1)},

and we minimize
L
1

Ly = — log po (vily=<i)
=1



Experiments - Datasets and Setup
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2D-CNN: ResNet-152 pre-trained on ImageNet
3D-CNN: ECO and R(2+1)D, both pre-trained on Kinetics-400
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Results - Comparison with State of the Art
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Results - TRECVID 2020

Run

Training Dataset
MSRVTT + VTT20 (80%)
MSRVTT + VTT20
MSRVTT + VTT20 (80%) + VATEX

MSRVTT + VTT20

Validation epochs

VTT20(20%)

VTT20(20%)

40

29

3

46

BLEU-4 METEOR

0.0115
0.0113
0.0075

0.0105

0.2105
0.2187
0.1938

0.2071

0.136

0.087

0.124

CIDEr-D  SPICE
0.06 0.057
0.065 0.06
0.047 0.04
0.062 0.055
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Qualitative Analysis: MSVD

Ours: a woman is applying makeup on her face

S/

NN IN PRP$ NN

[\

GT1: a woman is applying makeup on her face
GT2: a woman is powdering her face

w/o syntactic representation: a woman is applying eye shadow



Qualitative Analysis: MSVD

Ours: a man is pouring salsa into a bowl

S

NN IN DT NN

[ 1] ]

GT1: a man is putting food on a plate
GT2: the man is pouring salsa over the pasta

w/o syntactic representation: a man is pouring sauce over spaghetti sauce over spaghetti sauce



Qualitative Analysis: MSVD

Ours: a man and woman are riding

|

DT NN CC NN VBP VBG

H

GT1: a man and woman are riding
GT2: a man and a woman are riding a motorcycle




Conclusions and Work Plan for TRECVID 2021

1. Paying more attention to syntax improves the quality of descriptions.

2. Controlling the semantic meaning and syntactic structure of
generated captions guarantees the contextual relation between the

words in the sentence.

As feature work, we consider to Improve visual-syntactic embedding by
learning to relate syntactic information to a graph-based representation of

visual content.
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Code/Features/Models available on GitHub
https://github.com/jssprz/visual syntactic embedding video captioning
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